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AMG

• Iterative method for solving linear equations
• Commonly used as a preconditioner
• Idea: capture error at multiple resolutions using grid transfer operator:
– Smoothing damps the oscillatory error (high energy) 
– Coarse grid correction reduces the smooth error (low energy)
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Prolongator requirements

Few desired properties

• preservation of null space:  the span of basis functions on each 
coarse level should contain zero energy modes

• minimization of energy: basis functions on the coarse levels should 
have as small energy as possible

• bounded intersection: the supports of the basis functions on the 
coarse levels should overlap as little as possible.



Smoothed Aggregation

SA prolongator is constructed in a few 
steps

• Construct aggregates
– Select a set of root nodes
– Group unknowns into aggregates

•  Construct tentative prolongator and 
coarse nullspace
– Restrict fine nullspace onto aggregates
– Do QR decomposition

We satisfy 

• Decrease energy of         by smoothing

May not satisfy 

aggregates
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Energy minimization



Energy minimization

Advantages:
• Flexibility (input): 
– accept any sparsity pattern (arbitrary basis function support)
– enforce constraints: important modes requiring accurate interpolation
– choice of norm for minimization and search space

• Robustness

Energy minimization is a general framework.

Idea: construct the prolongator P by minimizing the energy of each column 
Pk while enforcing constraints.

Find P:

subject to
• specified sparsity pattern;
• nullspace preservation.



Constraint matrix

• Sparsity pattern
• B,     fine and coarse mode(s) requiring accurate interpolation

Preservation of the nullspace: for instance 

• Representation of the constraints in the algorithm:

inputs



Constraint matrix

Two nullspace vectors:



Solve AP = 0 
in a constrained Krylov space

Energy-minimization algorithm

Find P:

subject to
• specified sparsity pattern;
• nullspace preservation.

• Definition of energy        depends on Krylov method
– A for CG
– ATA for GMRES
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Energy minimization algorithm



A Special Case of Energy Minimization: SA

• Assume an initial guess P0 satisfying B = P0Bc, i.e., it satisfies 
constraints of interpolating nullspace.

• Improve P0 with one step of damped Jacobi:

• P still interpolates the nullspace.  P can be rewritten as 

                               Note that ΔPBc = 0.

• SA can be viewed as one step of energy minimization with 
constraints specifying nullspace interpolation but not sparsity 
pattern enforcement.

P= I−D−1 A P0

P=P0−D−1 AP0=P0 P



Energy-minimization – Elasticity 3D

Lots of choices. We focus on 3 DOFs/nodes on the coarse grid

• 6 rigid body modes (3 translations & 3 rotations)

• CG to solve A P = 0 (effectively defines energy)

• P0 & sparsity pattern are smoothed aggregation inspired

– Initial Guess: tentative prolongator                     

– Sparsity Pattern:                 , where S is either A, or filtered A  

• Filtered matrix is defined using distance Laplacian + dropping for sparsity 

pattern

• A is still used to define energy (as opposed to filtered A)
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• SA: 6 DOFs/node
• Energy Minimization: 3 DOFs/node, 6 nullspace vectors

Tab. : Iteration count and complexity (lower complexity = faster run 
time) for increasing mesh sizes and stretch factors.

∑i
nnz Ai

nnz A 
complexity:

Comparison with Smoothed Aggregation

3.85x
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Parallel implementation



18

Energy minimization algorithm
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Energy minimization algorithm



Parallel aggregation

Two choices: coupled and uncoupled aggregation
• Uncoupled aggregation aggregates only inside a subdomain
• Coupled aggregation allows aggregates to cross subdomain 

boundary
• Coupled aggregation is more expensive, but has convergence 

similar to the serial case

             Uncoupled                                            Coupled



Coupled aggregation

Couple aggregation algorithm:

1. Construct uncoupled aggregation in each subdomain 

(local procedure)

● Some nodes are left unaggregated

2. Assign unaggregated vertices to adjacent root nodes 

from neighbor subdomains

● Might require some arbitration

3. Create new root nodes and aggregates if we have 

multiple adjacent unaggregated nodes

4. Sweep remaining nodes into existing aggregates



Constraints in parallel

Let P have the following pattern and nullspace consist of two vectors



Constraints in parallel

What does each block correspond to?

Consider a row of P with three nonzeros

            Prolongator row                                       Coarse nullspace

 Block of the constraint corresponding to the row



Energy minimization algorithm (updated)



MueLu

• Future package of the Trilinos project (to replace ML)
– Massively parallel
– Multicore and GPU aware
– Templated types for mixed precision calculation (32-bit – 64-bit) and 

type complex

• Objective is to solve problem with billions of DOF on 100Ks of 
cores...

• Leverage the Trilinos software stack:

• Currently in development...

Tpetra – distributed linear algebra

Kokkos – single node kernels

Belos
Krylov methods

Anasazi
Eigen-solvers

Tifpack
Algebraic precond.

… MueLu
MG solver
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Numerical results – Laplace 3D

• Laplace 3D, 7 point stencil
• Energy minimization
– 2 CG iterations
– Initial guess: tentative prolongator
– Sparsity pattern: same as SA
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Numerical results – Elasticity 3D

• Elasticity 3D, Poisson ratio 0.25
• Energy minimization
– 2 CG iterations
– Initial guess: tentative prolongator
– Sparsity pattern: same as SA
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Summary

• Energy minimization AMG is flexible

• Energy minimization AMG is suitable for parallelization
– Standard parallel operations (MxM, BLAS1) are well known
– Constraint application could be done locally storing ghost info

• Preliminary results show promise

European Trilinos User Group Meeting 2013

June 3rd - June 5th

Technical University of Munich, Munich, Germany
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